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Appendix A

Laplace Transform Reference and Examples

A.1 Introduction

This document covers a basic introduction to forward and inverse Laplace Transforms. It will also present
example problems using Laplace transforms to solve a mechanical system and an electrical system, respec-
tively.

A.2 Synthesis and Analysis Equations

There are two main kinds of Laplace transform - the bilateral Laplace transform and the unilateral Laplace
transform. The primary distinction between the two is that the unilateral Laplace transform only uses the
portion of a signal after time 0−. Anything else about the signal for negative times will be summarized
by a constant in the transformation. Because of this, there are two different sets of synthesis and analysis
equations:

Bilateral Unilateral

Synthesis x(t) = 1

2πj

∫ σ+j∞

σ−j∞
X(s)est ds x(t) = 1

2πj

∫ σ+j∞

σ−j∞
X (s)est ds

Analysis X(s) =
∫

∞

−∞
x(t)e−st dt X (s) =

∫

∞

0−
x(t)e−st dt

Note in the synthesis equations that there is a constant real value σ in the limits on integration - this
value is chosen such that the integral converges. The set of σ values for which the synthesis integral converges
is known as the Region of Convergence, or ROC, of the particular transform. Also note that the synthesis
equation itself is rarely used; rather, specific inverse Laplace transform pairs should be memorized and
applied when appropriate.

Some books will clearly distinguish between the two kinds of Laplace transforms while others will simply
assume one or the other (or use the same symbol for both!). The Oppenheim and Willsky book refer-
enced below uses X(s) to denote the bilateral Laplace transform and X (s) to denote the unilateral Laplace
transform. The Haykin and Van Veen book uses X(s) for both.

Copyright 2010, Gustafson et al.
App A – 1



EGR 119L - Spring 2010

A.3 Common Laplace Transform Pairs and Properties

The next three subsections present tables of common Laplace transform pairs and Laplace transform prop-
erties. The information in these tables has been adapted from:

• Signals and Systems, 2nd ed. Simon Haykin and Barry Van Veen. John Wiley & Sons, Hoboken,
NJ, 2005. pp. 781-783.

• Signals and Systems, 2nd ed. Alan V. Oppenheim and Alan S. Willsky with S. Hamid Nawab.
Prentice Hall, Upper Saddle River, NJ, 1997. p. 691-692.

A.3.1 Common Laplace Transform Pairs

Basic Bilateral Laplace Transform Pairs

Name Signal Laplace Transform ROC

Basic Signal x(t) X(s) Rx

Impulse x(t) = δ(t − t0) X(s) = e−st0 All s

Unit step x(t) = u(t − t0) X(s) =
e−st0

s
σ > 0

Reversed step x(t) = −u(−(t − t0)) X(s) =
e−st0

s
σ < 0

Polynomial x(t) =
tn−1

(n − 1)!
u(t) X(s) =

1

sn
σ > 0

Reversed Polynomial x(t) = −
tn−1

(n − 1)!
u(−t) X(s) =

1

sn
σ < 0

Exponential x(t) = e−αtu(t) X(s) =
1

s + α
σ > −ℜ{α}

Reversed Exponential x(t) = −e−αtu(−t) X(s) =
1

s + α
σ < −ℜ{α}

Polynomial Exponential x(t) =
tn−1

(n − 1)!
e−αtu(t) X(s) =

1

(s + α)n
σ > −ℜ{α}

Rev. Poly. Exp. x(t) = −
tn−1

(n − 1)!
e−αtu(−t) X(s) =

1

(s + α)n
σ < −ℜ{α}

Cosine x(t) = cos(ω0t)u(t) X(s) =
s

s2 + ω2
0

σ > 0

Sine x(t) = sin(ω0t)u(t) X(s) =
ω0

s2 + ω2
0

σ > 0

Exponential Cosine x(t) = e−αt cos(ω0t)u(t) X(s) =
s + α

(s + α)2 + ω2
0

σ > −ℜ{α}

Exponential Sine x(t) = e−αt sin(ω0t)u(t) X(s) =
ω0

(s + α)2 + ω2
0

σ > −ℜ{α}

Copyright 2010, Gustafson et al.
App A – 2



EGR 119L - Spring 2010

A.3.2 Common Laplace Transform Properties

For the most part, the unilateral Laplace transform properties are the same as those for the bilateral Laplace
transform. The major exceptions have to do with the fact that the unilateral Laplace transform is only
defined for the part of the signal that exists at or after t = 0−, so any property that could shift, scale, or
reverse the signal will have a slightly different form. Also, the derivative property requires knowledge of the
initial value since there will be an instantaneous change as a result. Finally, the integral property has a lower
limit of 0− instead of −∞. The bilateral properties are presented below and the unilateral properties are on
the next page.

Properties of the Bilateral Laplace Transform

Property Signal Laplace Transform ROC

Basic Signals x(t), y(t), z(t) X(s), Y (s), Z(s) Rx, Ry, Rz

Linearity z(t) = Ax(t) + By(t) Z(s) = AX(s) + BY (s) At least Rx ∩ Ry

Time Shifting z(t) = x (t − t0) Z(s) = e−st0X(s) Rx

s-domain Shifting z(t) = es0tx(t) Z(s) = X(s − s0) s for s − s0 ∈ Rx

Conjugation z(t) = x∗(t) Z(s) = X∗(s∗) Rx

Time and Frequency Scaling z(t) = x(at) Z(s) =
1

|a|
X

( s

a

)

s for
s

a
∈ Rx

Convolution z(t) = x(t) ∗ y(t) Z(s) = X(s)Y (s) At least Rx ∩ Ry

Time Differentiation z(t) =
d

dt
x(t) Z(s) = sX(s) At least Rx

Integration z(t) =

∫ t

−∞

x(τ)dτ Z(s) =
1

s
X(s) At least Rx ∩ {σ > 0}

Frequency Differentiation z(t) = −tx(t) Z(s) =
d

ds
X(s) Rx
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Properties of the Unilateral Laplace Transform

Property Signal Laplace Transform

Basic Signals
x(t), y(t), z(t)
x(t) = y(t) = 0, t < 0

X (s),Y(s),Z(s)

Linearity z(t) = Ax(t) + By(t) Z(s) = AX (s) + BY(s)

Time Shifting z(t) = x (t − t0)
Z(s) = e−st0X (s)
if x(t − t0)u(t) = x(t − t0)u(t − t0)

s-domain Shifting z(t) = es0tx(t) Z(s) = X (s − s0)

Time and Frequency Scaling z(t) = x(at), a > 0 Z(s) =
1

a
X

( s

a

)

Conjugation z(t) = x∗(t) Z(s) = X ∗(s∗)

Convolution z(t) = x(t) ∗ y(t) Z(s) = X (s)Y(s)

Time Differentiation z(t) =
d

dt
x(t) Z(s) = sX (s) − x(0−)

Frequency Differentiation z(t) = −tx(t) Z(s) =
d

ds
X (s)

Time Integration z(t) =

∫ t

0−

x(τ)dτ Z(s) =
1

s
X (s)

A.3.3 Laplace Transform Initial and Final Value Theorems

The initial and final value for a signal x(t) can be determined by its Laplace transform X(s) if certain
conditions are met. If X(s) is defined as a ratio of polynomials, and the highest order of the numerator is
less than the highest order of the denominator, then the initial value for the signal can be determined with:

x(0+) = lim
s→∞

sX(s)

Note that if the numerator is of the same or higher order than the denominator of the Laplace transform
the limit on the right does not converge.

If X(s) is defined as a ratio of polynomials, and all the values of s that make the denominator equal to 0
have negative real parts (in other words, all the poles are in the left half-plane), then the final value for the
signal can be determined with:

lim
t→∞

x(t) = lim
s→0

sX(s)
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A.4 Examples

The following are examples of how Fourier series coefficients can be used to simplify and solve for outputs
(in these cases, positions and output voltages) given periodic inputs (forces and input voltages).

A.4.1 Spring-Mass-Damper System

A mass M is attached to a stationary wall via a spring K and a damper fv. An external force f(t) is applied
to the mass and the resulting position of the mass x(t) is measured.

M

K

fv

f

x

The external force is given by the equation:

f(t) =
(

α + β cos(5t) + γe−3t
)

u(t)

where α, β, and γ are real constants. At time 0, the mass is displaced x0 = 1 m and has a velocity of ẋ0 = 3
m/s. The element properties are: M=1 kg, fv=1010 kg/s=1010 N·s/m and K=10000 kg/s2=10000 N/m.

Use the bilateral Laplace transform to find the transfer function between the output position and the
input force, then use the unilateral Laplace transform to determine a function for the output position.

Determine the Differential Equation and Transfer Function

For this mass, the equation of motion is given by:

∑

Fx = −Kx − fv

dx

dt
+ f(t) = M

d2x

dt2

M
d2x

dt2
+ Kx + fv

dx

dt
= f(t)

Assuming the Laplace transform of the input force is given by F (s) and the Laplace transform of the output
position is given by X(s), use the differentiation property to obtain the transfer function H(s) = X(s)/F (s):

(Ms2 + fvs + K)X(s) = F (s)

H(s) =
X(s)

F (s)
=

1

Ms2 + fvs + K

The transfer function can be used to determine how the system will respond to a wide variety of inputs,
but as it is based on the bilateral transform, any solution assumes that x(t) and all its derivatives at time 0−

are zero (or, alternately, that you are looking only for the particular solution). To get the complete solution,
you need to use the unilateral transform properties with the differential equation.

Determine the Unilateral Laplace Transform of the Output

Using the differential equation:

M
d2x

dt2
+ Kx + fv

dx

dt
= f(t)

the unilateral transform properties produce the relationship:

M(s2X (s) − sx(0−) − ẋ(0−)) + fv((sX (s) − x(0−)) + K(X (s)) = F(s)

(Ms2 + fvs + K)X (s) = Msx(0−) + Mẋ(0−) + fvx(0−) + F(s)

X (s) =
Msx(0−) + Mẋ(0−) + fvx(0−) + F(s)

Ms2 + fvs + K
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Note that this is very similar to what the transfer function would produce, with the exception of the initial
position and velocity terms in the numerator. Those represent the homogeneous portion of the complete
solution. Now substitute in the Laplace transform of the input:

F(s) = UL{f(t)}

F(s) = UL
{(

α + β cos(5t) + γe−3t
)

u(t)
}

F(s) =
α

s
+

βs

s2 + 52
+

γ

s + 3

F(s) =
α s3 + 3 αs2 + 25 αs + 75 α + β s3 + 3 β s2 + γ s3 + 25 γ s

s (s2 + 25) (s + 3)

which, once put into the expression for X (s) above and simplified, gives:

X (s) =
Ms5x0 + (Mẋ0 + fvx0 + 3 Mx0) s4 + (γ + α + 3 fvx0 + β + 3 Mẋ0 + 25 Mx0) s3

s (s2 + 25) (s + 3) (Ms2 + fvs + K)
+

(3 α + 3 β + 25 fvx0 + 75 Mx0 + 25 Mẋ0) s2 + (25 α + 75 Mẋ0 + 25 γ + 75 fvx0) s + 75 α

s (s2 + 25) (s + 3) (Ms2 + fvs + K)

substituting in for the parameter values and initial conditions gives:

X (s) =
s5 + 1016 s4 + (γ + α + 3064 + β) s3 + (3 α + 3 β + 25400) s2 + (25 α + 75975 + 25 γ) s + 75 α

s (s2 + 25) (s + 3) (s2 + 1010 s + 10000)

Using partial fraction expansion on this expression yields:

X (s) = · · ·

0.0001 α

s
+

0.0000143 γ

s + 3.0
+

1.01 − 0.0000808 β − 0.000144 γ − 0.000101 α

s + 10.0
+

−0.0131 + 0.00000101 β + 0.00000101 γ + 0.00000101 α

s + 1000.0
+

0.0000798 β s + 0.000202 β

s2 + 25.0

This form is useful because the denominators will indicate the form - though not the magnitude - of the
functions that will comprise the solution. The numerators will give the relative magnitudes - and in the case
of the last part, the balance between cosine and sine. The five denominators, in order, are indicative of a
constant, an exponential with a decay rate of 3, an exponential with a decay rate of 10, an exponential with
a decay rate of 1000, and sine and cosine terms with a frequency of 5 rad/s.

The final answer, obtained by taking the inverse Laplace transform of the expression above, is:

x(t) = · · ·

0.0001 α+

0.000143 γ e−3.0 t+

(1.01 − 0.0000808 β − 0.000144 γ − 0.000101 α)e−10.0 t+

(−0.0131 + 0.00000101 β + 0.00000101 γ + 0.00000101 α)e−1000.0 t+

0.0000798 β cos (5.0 t) + 0.0000404 β sin (5.0 t)

when t ≥ 0.
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A.4.2 RLC Circuit

The example above, while demonstrating the full formal process for using Laplace transforms, gets rapidly
bogged down with algebra. Typically, Laplace transforms for mechanical and electrical systems with multiple
degrees of freedom will do that, so it is a good idea to use Laplace transforms in conjunction with a program
capable of symbolically solving simultaneous equations as well as being able to solve forward and inverse
Laplace transforms. Furthermore, to solve systems with initial conditions other than 0, you will either need
to carry around the extra terms from the unilateral Laplace transform or solve the problem in frequency
space using the bilateral transform, use the differentiation property to reconstruct a differential equation,
and determine enough initial conditions to properly solve the differential equation. The following discussion
will cover the latter case using the circuit below:

vovi

R1

R2C

L

with element values R1 = R2=2 kΩ, L=1 mH, C=2.2 µF.

Convert to Impedances and Laplace Transforms

Converting the inductor, capacitor, and resistances to their impedances and re-writing the variables in terms
of their Laplace transforms yields the following circuit:

VoVi

ZR1

ZC ZR2

ZL

Set Up and Solve Circuit Equations

The circuit above can be solved with voltage division. If we defineZLR2C = ZC‖(ZL + ZR2
)

then

Vo(s) = Vi(s) ·

( ZLR2CZR1
+ ZLR2C

)

·

( ZR2ZL + ZR2

)

Substituting in the individual impedances:ZL = sL ZC =
1

sCZR1
= R1 ZR2

= R2

and simplifying yields:

Vo(s) = Vi(s) ·

(

R2

(R1 L C) s2 + (R1 R2 C + L) s + (R1 + R2)

)

Cross-multiplying produces:
(

(R1 L C) s2 + (R1 R2 C + L) s + (R1 + R2)
)

Vo(s) = (R2) Vi(s)
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Convert to Differential Equation

The s terms in the coefficients represent derivatives, so the Laplace transform above represents the differential
equations:

(R1 L C)
d2vo

dt2
+ (R1 R2 C + L)

dvo

dt
+ (R1 + R2) vo = R2vi

Since this is a second order ordinary differential equation, we will need to determine two values for vo -
typically the initial value and the initial derivative, though that is not explicitly required.

Determine Required Initial Conditions

The problem is, for circuits, the initial conditions are generally given in terms of capacitor voltages and
inductor currents, since those are the variables that do not change instantaneously. In this case, for example,
assume that the input voltage (in...volts) is given by:

vi(t) =

{

t < 0 3
t ≥ 0 5 + 5 cos(103t)

and further assume that the system has been running for a very, very long time before time t = 0. The
initial capacitor voltage and inductor current can be determined using the DC equivalent circuit; assuming
the capacitor voltage is measured from the top node to the bottom node and the inductor current is measured
as flowing from left to right, they are:

vC(0−) = vi(0
−)

(

R2

R1 + R2

)

= 1.5 V iL(0−) =
vi(0

−)

R1 + R2

= 0.75 mA

The values for vo(0
+) and v̇o(0

+) will come from examining the circuit at time 0+ and keeping in mind the
fact that:

vC(0+) = vC(0−) = 1.5 V

iL(0+) = iL(0−) = 0.75 mA

For this circuit, since the current through the inductor is known, the voltage across resistor R2 - which is
the same as the output voltage - can be determined using Ohm’s Law:

vo(0
+) = vR2

(0+) = iL(0+)R2 = 1.5 V

The more difficult equation here is to get v̇o(0
+). Note that this would also be the same as i̇o(0

+)R2.
Since the resistor is in series with the inductor, i̇o(0

+) = i̇L(0+) = 1

L
vL(0+). The voltage across an inductor,

however, can change instantaneously so this does not give a known initial condition.
If you look at the circuit, the “easily” known values at time 0+ are the source voltage, the capacitor

voltage, the inductor current, and - because of the known inductor current - the voltage and current for R2.
Using KVL on the right loop yields:

−vC(0+) + vL(0+) + vR2
(0+) = 0

vL(0+) = vC(0+) − vR2
(0+) = 0 V

For this circuit, the initial voltage across the inductor happens to be 0 V, meaning the derivative of its
current is also initially zero. This in turn means the derivative of the voltage across resistor R2 is similarly
zero.
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Solve Differential Equation

At this point, everything necessary for solving the problem at hand is known - there is a differential equation:

(R1 L C)
d2vo

dt2
+ (R1 R2 C + L)

dvo

dt
+ (R1 + R2) vo = R2vi

with element values R1 = R2=2 kΩ, L=1 mH, C=2.2 µF, a forcing function for times greater than 0 of

vi(t) = 5 + 5 cos(103t)

with initial conditions

vo(0
+) = 1.5 V

v̇o(0
+) = 0 V/s

Substituting in for the parameter values and the function of the input gives:

0.0000044
d2vo

dt2
+ 8.801

dvo

dt
+ 4000.0 vo = 2000.0

(

5 + 5 cos(103t)
)

Solving this yields

vo(t) = 2.5 − 1.4285e−454.56t + 0.00079 e−1.9998∗106 t + 0.42769 cos
(

103 t
)

+ 0.94206 sin
(

103 t
)

for times t ≥ 0.
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