Difference between revisions of "Fourier Series"

From PrattWiki
Jump to navigation Jump to search
 
Line 6: Line 6:
 
electrical system, respectively.
 
electrical system, respectively.
  
\section{Synthesis Equations}
+
==Synthesis Equations==
 
There are three primary Fourier series representations of a periodic
 
There are three primary Fourier series representations of a periodic
signal $f(t)$
+
signal <math>f(t)</math>
with period $T$ and fundamental frequency $\omega_0=\frac{2\pi}{T}$:
+
with period <math>T</math>  and fundamental frequency <math>\omega_0=\frac{2\pi}{T}</math>
\begin{align*}
+
(using the notation in Svoboda & Dorf, Introduction to Electric Circuits, 9th Edition):
\mbox{Trigonometric Series}&~ & f(t)&=C_0+
+
<center><math>
\sum_{n=1}^{\infty}\left(A_n~\cos(n\omega_0 t) +
+
\begin{align}
B_n~\sin(n\omega_0 t)\right)\\
+
\mbox{Trigonometric Series}&~ & f(t)&=a_0+
 +
\sum_{n=1}^{\infty}\left(a_n~\cos(n\omega_0 t) +
 +
b_n~\sin(n\omega_0 t)\right)\\
 
\mbox{Cosine Series} &~ & f(t)&=
 
\mbox{Cosine Series} &~ & f(t)&=
C_0 + \sum_{n=1}^{\infty}C_n~\cos(n\omega_0 t+\phi_n)\\
+
c_0 + \sum_{n=1}^{\infty}c_n~\cos(n\omega_0 t+\theta_n)\\
 
\mbox{Exponential Series} &~ & f(t)&=
 
\mbox{Exponential Series} &~ & f(t)&=
\sum_{k=-\infty}^{\infty}a_k~e^{jk\omega_0 t}
+
\sum_{k=-\infty}^{\infty}\mathbb{C}_n~e^{jn\omega_0 t}
\end{align*}
+
\end{align}
In the series above, $A_n$, $B_n$, $C_0$, $C_n$, and $\phi_n$ are real
+
</math></center>
numbers while $a_k$ may be complex.
+
In the series above, <math>a_0</math>, <math>a_n</math>, <math>b_n</math>, <math>c_0</math>, <math>c_n</math>,
Also note that the index $n$ is used for summations between 1 and $\infty$
+
and <math>\theta_n</math> are real
while $k$ is used for the summation between $-\infty$ to $\infty$
+
numbers while <math>\mathbb{C}_n</math>  may be complex.
 +
<!--
 +
Also note that the index <math>n</math> is used for summations between 1 and <math>\infty</math>
 +
while <math>k</math>  is used for the summation between <math>-\infty</math>  to <math>\infty</math>
 
primarily to demonstrate the different ranges of the summations.
 
primarily to demonstrate the different ranges of the summations.
 +
-->
  
\section{Analysis Equations}
+
==Analysis Equations==
 
The formulas for obtaining the Fourier series coefficients are:
 
The formulas for obtaining the Fourier series coefficients are:
\begin{align*}
+
<center><math>
A_n&=\frac{2}{T}\int_{T}f(t)~\cos(n\omega_0t)~dt &
+
\begin{align}
B_n&=\frac{2}{T}\int_{T}f(t)~\sin(n\omega_0t)~dt \\
+
a_n&=\frac{2}{T}\int_{T}f(t)~\cos(n\omega_0t)~dt &
C_0&=\frac{1}{T}\int_{T}f(t)~dt & C_n&= \sqrt{A_n^2+B_n^2} \\
+
b_n&=\frac{2}{T}\int_{T}f(t)~\sin(n\omega_0t)~dt \\
\phi_n&=-\tan^{-1}\left(\frac{B_n}{A_n}\right)\\
+
a_0=c_0&=\frac{1}{T}\int_{T}f(t)~dt & c_n&= \sqrt{a_n^2+b_n^2} \\
a_k&=\frac{1}{T}\int_Tf(t)~e^{-jk\omega_0t}~dt &  
+
\theta_n&=
\end{align*}
+
\begin{cases}
 +
-\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n>0\\
 +
180^{\circ}-\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n<0
 +
\end{cases}\\
 +
\mathbb{C}_n&=\frac{1}{T}\int_Tf(t)~e^{-jn\omega_0t}~dt &  
 +
\end{align}
 +
</math></center>
  
 
+
==Translation Table==
\section{Translation Table}
 
 
The table below summarizes how to get one set of Fourier Series
 
The table below summarizes how to get one set of Fourier Series
 
coefficients from any other representation.  Note that it is assumed
 
coefficients from any other representation.  Note that it is assumed
the function being represented is real - meaning $a_n$=$a_{-n}^*$.
+
the function being represented is real - meaning <math>a_n=a_{-n}^*</math>.
Also, $n>0$ in the table.  The core equations at use in the
+
Also, <math>n>0</math> in the table.  The core equations at use in the
 
translation table are:
 
translation table are:
\begin{align*}
+
<center><math>
 +
\begin{align}
 
e^{j\theta}&=\cos(\theta)+j\sin(\theta)\\
 
e^{j\theta}&=\cos(\theta)+j\sin(\theta)\\
cos(\theta+\phi)&=\cos(\theta)\cos(\phi)-\sin(\theta)\sin(\phi)
+
\cos(\theta+\phi)&=\cos(\theta)\cos(\phi)-\sin(\theta)\sin(\phi)\\
\end{align*}
+
\mbox{atan2}(b_n,a_n)&=
 +
\begin{cases}
 +
\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n>0\\
 +
\tan^{-1}-180^{\circ}\left(\frac{b_n}{a_n}\right) & a_n<0
 +
\end{cases}\\
 +
\end{align}
 +
</math></center>
  
\renewcommand{\arraystretch}{1.5}
+
<center><math>
\begin{align*}
+
\begin{align}
 
\begin{array}{|c|c|c|c|} \hline
 
\begin{array}{|c|c|c|c|} \hline
\mbox{To Get} &  
+
\mbox{Find:} & \mbox{From trig} & \mbox{From cosine} & \mbox{From exponential} \\
\multicolumn{3}{|c|}{\mbox{From}}\\
 
~ & \mbox{Trig. Series} & \mbox{Cosine Series} & \mbox{Exp. Series} \\
 
 
\hline
 
\hline
A_n & A_n & C_n\cos(\phi_n) & a_n+a_{-n}=2\Re\{a_n\}\\ \hline
+
a_n & a_n & c_n\cos(\theta_n) & \mathbb{C}_n+\mathbb{C}_{-n}=2\Re\{\mathbb{C}_n\}\\ \hline
B_n & B_n & -C_n\sin(\phi_n) & j\left(a_n-a_{-n}\right)=-2\Im\{a_n\}\\ \hline
+
b_n & b_n & -c_n\sin(\theta_n) & j\left(\mathbb{C}_n-\mathbb{C}_{-n}\right)=-2\Im\{\mathbb{C}_n\}\\ \hline
C_0 & C_0 & C_0 & a_0 \\ \hline
+
a_0=c_0 & a_0 & c_0 & \mathbb{C}_0 \\ \hline
C_n & \sqrt{A_n^2+B_n^2} & C_n & |a_n|+|a_{-n}|=2|a_n|\\ \hline
+
c_n & \sqrt{a_n^2+b_n^2} & c_n & |\mathbb{C}_n|+|\mathbb{C}_{-n}|=2|\mathbb{C}_n|\\ \hline
\phi_n & -\tan^{-1}\left(\frac{B_n}{A_n}\right) & \phi_n & \angle a_n\\ \hline
+
\theta_n & -\mbox{atan2}(b_n,a_n) & \theta_n & \angle \mathbb{C}_n\\ \hline
a_0 & C_0 & C_0 & a_0 \\ \hline
+
\mathbb{C}_0 & a_0 & c_0 & \mathbb{C}_0 \\ \hline
a_n & \frac{A_n}{2}+\frac{B_n}{2j}=
+
\mathbb{C}_n & \frac{a_n}{2}+\frac{b_n}{2j}=
\frac{A_n}{2}-j\frac{B_n}{2}
+
\frac{a_n}{2}-j\frac{b_n}{2}
  & \frac{C_n}{2}\angle \phi_n &
+
  & \frac{c_n}{2}\angle \theta_n &
a_n\\ \hline
+
\mathbb{C}_n\\ \hline
a_{-n} & \frac{A_n}{2}-\frac{B_n}{2j}=
+
\mathbb{C}_{-n} & \frac{a_n}{2}-\frac{b_n}{2j}=
\frac{A_n}{2}+j\frac{B_n}{2}
+
\frac{a_n}{2}+j\frac{b_n}{2}
& \frac{C_n}{2}\angle -\phi_n &a_{-n}
+
& \frac{c_n}{2}\angle -\theta_n &\mathbb{C}_{-n}
 
\\ \hline
 
\\ \hline
 
\end{array}
 
\end{array}
\end{align*}
+
\end{align}
 +
</math></center>
 +
<!--
 +
-->

Revision as of 22:51, 1 November 2015

Introduction

This document takes a look at different ways of representing real periodic signals using the Fourier series. It will provide translation tables among the different representations as well as example problems using Fourier series to solve a mechanical system and an electrical system, respectively.

Synthesis Equations

There are three primary Fourier series representations of a periodic signal \(f(t)\) with period \(T\) and fundamental frequency \(\omega_0=\frac{2\pi}{T}\) (using the notation in Svoboda & Dorf, Introduction to Electric Circuits, 9th Edition):

\( \begin{align} \mbox{Trigonometric Series}&~ & f(t)&=a_0+ \sum_{n=1}^{\infty}\left(a_n~\cos(n\omega_0 t) + b_n~\sin(n\omega_0 t)\right)\\ \mbox{Cosine Series} &~ & f(t)&= c_0 + \sum_{n=1}^{\infty}c_n~\cos(n\omega_0 t+\theta_n)\\ \mbox{Exponential Series} &~ & f(t)&= \sum_{k=-\infty}^{\infty}\mathbb{C}_n~e^{jn\omega_0 t} \end{align} \)

In the series above, \(a_0\), \(a_n\), \(b_n\), \(c_0\), \(c_n\), and \(\theta_n\) are real numbers while \(\mathbb{C}_n\) may be complex.

Analysis Equations

The formulas for obtaining the Fourier series coefficients are:

\( \begin{align} a_n&=\frac{2}{T}\int_{T}f(t)~\cos(n\omega_0t)~dt & b_n&=\frac{2}{T}\int_{T}f(t)~\sin(n\omega_0t)~dt \\ a_0=c_0&=\frac{1}{T}\int_{T}f(t)~dt & c_n&= \sqrt{a_n^2+b_n^2} \\ \theta_n&= \begin{cases} -\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n>0\\ 180^{\circ}-\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n<0 \end{cases}\\ \mathbb{C}_n&=\frac{1}{T}\int_Tf(t)~e^{-jn\omega_0t}~dt & \end{align} \)

Translation Table

The table below summarizes how to get one set of Fourier Series coefficients from any other representation. Note that it is assumed the function being represented is real - meaning \(a_n=a_{-n}^*\). Also, \(n>0\) in the table. The core equations at use in the translation table are:

\( \begin{align} e^{j\theta}&=\cos(\theta)+j\sin(\theta)\\ \cos(\theta+\phi)&=\cos(\theta)\cos(\phi)-\sin(\theta)\sin(\phi)\\ \mbox{atan2}(b_n,a_n)&= \begin{cases} \tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n>0\\ \tan^{-1}-180^{\circ}\left(\frac{b_n}{a_n}\right) & a_n<0 \end{cases}\\ \end{align} \)
\( \begin{align} \begin{array}{|c|c|c|c|} \hline \mbox{Find:} & \mbox{From trig} & \mbox{From cosine} & \mbox{From exponential} \\ \hline a_n & a_n & c_n\cos(\theta_n) & \mathbb{C}_n+\mathbb{C}_{-n}=2\Re\{\mathbb{C}_n\}\\ \hline b_n & b_n & -c_n\sin(\theta_n) & j\left(\mathbb{C}_n-\mathbb{C}_{-n}\right)=-2\Im\{\mathbb{C}_n\}\\ \hline a_0=c_0 & a_0 & c_0 & \mathbb{C}_0 \\ \hline c_n & \sqrt{a_n^2+b_n^2} & c_n & |\mathbb{C}_n|+|\mathbb{C}_{-n}|=2|\mathbb{C}_n|\\ \hline \theta_n & -\mbox{atan2}(b_n,a_n) & \theta_n & \angle \mathbb{C}_n\\ \hline \mathbb{C}_0 & a_0 & c_0 & \mathbb{C}_0 \\ \hline \mathbb{C}_n & \frac{a_n}{2}+\frac{b_n}{2j}= \frac{a_n}{2}-j\frac{b_n}{2} & \frac{c_n}{2}\angle \theta_n & \mathbb{C}_n\\ \hline \mathbb{C}_{-n} & \frac{a_n}{2}-\frac{b_n}{2j}= \frac{a_n}{2}+j\frac{b_n}{2} & \frac{c_n}{2}\angle -\theta_n &\mathbb{C}_{-n} \\ \hline \end{array} \end{align} \)