General Linear Regression

From PrattWiki
Revision as of 23:53, 27 October 2019 by DukeEgr93 (talk | contribs) (Finding the coefficients for the "constant" model)
Jump to navigation Jump to search

This is a work in progress. It is meant to capture the mathematical proof of how general linear regression works. It is math-heavy.

Introduction

Assume you have some data set where you have $$N$$ independent values $$x_k$$ and dependent values $$y_k$$. You also have some reasonable scientific model that relates the dependent variable to the independent variable. If that model can be written as a general linear fit, that means you can represent the fit function $$\hat{y}(x)$$ as:

$$ \begin{align*} \hat{y}(x)&=\sum_{m=0}^{M-1}a_m\phi_m(x) \end{align*} $$

where $$\phi_m(x)$$ is the $$m$$th basis function in your model and $$a_m$$ is the constant coefficient. For instance, if you end up having a model:

$$ \begin{align*} \hat{y}(x)&=3e^{-2x}+5 \end{align*} $$

then you could map these to the summation with $$M=2$$ basis function total and:

$$ \begin{align*} a_0 &= 3 & \phi_0(x) &= e^{-2x} \\ a_1 &= 5 & \phi_1(x) &= x^0 \end{align*} $$

Note for the second term that $$\phi(x)$$ must be a function of $$x$$ -- constants are thus the coefficients on an implied $$x^0$$.

The goal, once we have established a scientifically valid model, is to determine the "best" set of coefficients for that model. We are going to define the "best" set of coefficients as the values of $$a_m$$ that minimize the sum of the squares of the estimate residuals, $$S_r$$, for that particular model. Recall that:

$$ \begin{align*} S_r&=\sum_k\left(y_k-\hat{y}_k\right)^2=\sum_k\left(\hat{y}_k-y_k\right)^2 \end{align*} $$

Finding the coefficients for the "constant" model

The simplest model you might come up with is a simple constant, $$\hat{y}(x)=a_0x^0$$. This means that the $$S_r$$ value, using the second version above, will be:

$$\begin{align*} S_r&=\sum_k\left(\hat{y}_k-y_k\right)^2=\sum_k\left(a_0-y_k\right)^2 \end{align*}$$

Keep in mind that the only variable right now is $$a_0$$; all the $$x$$ and $$y$$ values are constant independent or dependent values from your data set. The only parameter you can adjust is $$a_0$$. This means that to minimize the $$S_r$$ value, you need to solve:

$$ \begin{align*} \frac{dS_r}{da_0}&=0 \end{align*}$$

Here goes!

$$ \begin{align*} \frac{dS_r}{da_0}=\frac{d}{da_0}\left(\sum_k\left(a_0-y_k\right)^2 \right)&=0 \end{align*}$$

The derivative of a sum is the same as the sum of derivatives, so put the derivative operator inside:

$$ \begin{align*}\sum_k\frac{d}{da_0}\left(a_0-y_k\right)^2&=0 \end{align*}$$

Use the power rule to get that $$d(u^2)=2u~du$$ and note that $$\frac{du}{da_0}=1$$ here:

$$ \begin{align*} 2\sum_k\left(a_0-y_k\right)&=0\end{align*}$$

Since we are setting the left side to 0, the 2 is irrelevant. Also, the summand can be split into two parts...

$$ \begin{align*} \sum_k\left(a_0\right)-\sum_k\left(y_k\right)&=0 \end{align*}$$

...and then the parts can be separated.

$$ \begin{align*} \sum_k\left(a_0\right)&=\sum_k\left(y_k\right) \end{align*}$$

Recognize the $$a_0$$ is a constant; since you are adding that constant to itself for each of the $$N$$ data points, you can replace the summation with:

$$ \begin{align*} Na_0&=\sum_k\left(y_k\right)\end{align*}$$

Dividing by $$N$$ reveals the answer:

$$ \begin{align*} a_0&=\frac{1}{N}\sum_k\left(y_k\right)=\bar{y} \end{align*}$$

The best constant with which to model a data set is its own average!