Difference between revisions of "Python:Linear Algebra"
(→Code) |
(→Printing solution) |
||
Line 16: | Line 16: | ||
===Printing solution === | ===Printing solution === | ||
Python's format command is picky and will not take arrays. To print out the solutions to the above, for instance, you would need: | Python's format command is picky and will not take arrays. To print out the solutions to the above, for instance, you would need: | ||
− | < | + | <syntaxhighlight lang=python> |
print('x: {:f}, y: {:f}'.format(soln[0][0], soln[1][0])) | print('x: {:f}, y: {:f}'.format(soln[0][0], soln[1][0])) | ||
− | </ | + | </syntaxhighlight > |
or perhaps more clearly: | or perhaps more clearly: | ||
− | < | + | <syntaxhighlight lang=python> |
soln_vec = soln[:,0] | soln_vec = soln[:,0] | ||
print('x: {:f}, y: {:f}'.format(soln_vec[0], soln_vec[0])) | print('x: {:f}, y: {:f}'.format(soln_vec[0], soln_vec[0])) | ||
− | </ | + | </syntaxhighlight > |
− | Note that <code>soln[0]</code> will give you an array containing the x value, not just the x value, so while: | + | Note that <code>soln[0]</code> will give you an ''array'' containing the $$x$$ value, not just the $$x$$ value, and similarly <code>soln[1]</code> will give you an ''array'' containing the $$y$$ value, not just the $$y$$ value, so while: |
− | < | + | <syntaxhighlight lang=python> |
print('x: {}, y: {}'.format(soln[0], soln[1])) | print('x: {}, y: {}'.format(soln[0], soln[1])) | ||
− | </ | + | </syntaxhighlight> |
− | works, it is printing out | + | works, it is printing out arrays: |
<source> | <source> | ||
− | + | x: [-4.], y: [4.5] | |
</source> | </source> | ||
+ | |||
+ | That means you cannot try to format the arrays as if they were floats: | ||
+ | <syntaxhighlight lang=python> | ||
+ | print('x: {:f}, y: {:f}'.format(soln[0], soln[1])) | ||
+ | </syntaxhighlight > | ||
will give an error: | will give an error: | ||
− | < | + | <syntaxhighlight > |
TypeError: unsupported format string passed to numpy.ndarray.__format__ | TypeError: unsupported format string passed to numpy.ndarray.__format__ | ||
− | </ | + | </syntaxhighlight > |
+ | |||
=== Condition numbers === | === Condition numbers === | ||
As noted in Chapra 11.2.2, the base-10 logarithm gives an estimate for how many digits of precision are '''lost''' between the number of digits in the coefficients and the number of digits in the solution. Condition numbers based on the 2-norm may be calculated in Python using: | As noted in Chapra 11.2.2, the base-10 logarithm gives an estimate for how many digits of precision are '''lost''' between the number of digits in the coefficients and the number of digits in the solution. Condition numbers based on the 2-norm may be calculated in Python using: |
Revision as of 23:55, 18 November 2019
Contents
General
Solving
To solve Ax=b using linear algebra, be sure that A is a 2D array. b can either be 1D or 2D -- and in fact if 2D it can be a row or a column! Some math packages that solve linear algebra problems would require that b be a 2D column, but not Python. The result x will be the same shape and size as b (that is, 1D, 2D row, or 2D column). Here is an example with b as a 2D column:
A = np.array([[1, 1], [1, -1]])
b = np.array([[3], [4]])
soln = np.linalg.solve(A, b)
for example will create a variable called soln
that is:
array([[ 3.5],
[-0.5]])
Printing solution
Python's format command is picky and will not take arrays. To print out the solutions to the above, for instance, you would need:
print('x: {:f}, y: {:f}'.format(soln[0][0], soln[1][0]))
or perhaps more clearly:
soln_vec = soln[:,0]
print('x: {:f}, y: {:f}'.format(soln_vec[0], soln_vec[0]))
Note that soln[0]
will give you an array containing the $$x$$ value, not just the $$x$$ value, and similarly soln[1]
will give you an array containing the $$y$$ value, not just the $$y$$ value, so while:
print('x: {}, y: {}'.format(soln[0], soln[1]))
works, it is printing out arrays:
x: [-4.], y: [4.5]
That means you cannot try to format the arrays as if they were floats:
print('x: {:f}, y: {:f}'.format(soln[0], soln[1]))
will give an error:
TypeError: unsupported format string passed to numpy.ndarray.__format__
Condition numbers
As noted in Chapra 11.2.2, the base-10 logarithm gives an estimate for how many digits of precision are lost between the number of digits in the coefficients and the number of digits in the solution. Condition numbers based on the 2-norm may be calculated in Python using:
np.linalg.cond(A) # default is based on 2-norm
For information on using other norms to calculate condition numbers, see
help(np.linalg.cond)
and specifically information about the kwarg p
. Note that you must use np.inf
, not just inf, for the infinity norm.
Sweeping a Parameter
If you have a system where the coefficients change as a function of some parameter, you will generally need to use a loop to solve and store the solutions. If you have a system where the forcing function (right-side vector) changes, you may be able to solve all at once but generally a loop is the way to go. The following shows example code for sweeping through a parameter, storing values, and then plotting them:
Changing coefficient matrix
Equations
For this example, the equations are:
which means a matrix-based representation is:
The determinant for the coefficient matrix of this system is \(m+1\) meaning there should be a unique solution for all values of \(m\) other than -1. The code is going to sweep through 50 values of \(m\) between 0 and 5.
Code
Changing solution vector
Equations
For this example, the equations are:
which means a matrix-based representation is:
The determinant for the coefficient matrix of this system is 2 meaning there should always be a unique solution. The code is going to sweep through 75 values of \(p\) between -5 and 10.
Code
Multiple solution vectors simultaneously
This method is not recommended for people with limited experience with linear algebra.
Equations
For this example, the equations are:
which means a matrix-based representation is:
The determinant for the coefficient matrix of this system is 2 meaning there should always be a unique solution. The code is going to solve the system for 75 values of \(p\) between -5 and 10 by setting up a 75-column matrix of solution vectors and then extracting the first row of solutions for \(xa\) and the second row for \(ya\). Note that unlike the above two examples where \(x\) and \(y\) were lists, \(xa\) and \(ya\) are arrays.
Code
import numpy as np
import matplotlib.pyplot as plt
p = np.linspace(-5, 10, 75)
rhs = np.block([[p], [3 + 0 * p]]) # note use of 0*p to get array of correct size!
all_soln = np.linalg.solve(A, rhs)
xa = all_soln[0][:]
ya = all_soln[1][:]